
Decay of superfluid vortices
in CFL quark matter

Prof. Mark Alford
Washington University in St. Louis

Alford, Mallavarapu, Vachaspati, Windisch
arXiv:1601.04656 (Phys Rev C)



Outline

I Color-flavor locked quark matter: a superfluid.

I The instability of CFL superfluid vortices:
Mystery 1 Why are they not stable?

Mystery 2 Are they Metastable or Unstable?

I Answer 1: Semi-superfluid flux tubes are the lower-energy
alternative to vortices.

I Answer 2: It depends on the couplings. We numerically mapped
the metastability boundary.

I Bonus: the unstable mode, analytically understood

I Conclusions
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Color superconducting phases

Attractive QCD interaction ⇒ Cooper pairing of quarks.

Quark Cooper pair: 〈qαaξq
β
bζ〉

color α, β = r, g, b
flavor a, b = u, d, s
spin ξ, ζ =↑, ↓

Each possible BCS pairing pattern P is an 18× 18 color-flavor-spin
matrix

〈qαaξq
β
bζ〉1PI = ∆P P

αβ
ab ξζ

We expect pairing between different flavors .

The attractive channel is:

space symmetric [s-wave pairing]
color antisymmetric [most attractive]
spin antisymmetric [isotropic]

⇒ flavor antisymmetric

We will assume the most symmetric case, where all three flavors are
massless.
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Color-flavor-locked quark matter

Equal number of colors and flavors gives a special pairing pattern
(Alford, Rajagopal, Wilczek, hep-ph/9804403)

〈qαa q
β
b 〉 ∼ δαa δ

β
b − δ

α
b δ

β
a = εαβnεabn

color α, β
flavor a, b

This is invariant under equal and opposite
rotations of color and (vector) flavor

SU(3)color × SU(3)L × SU(3)R︸ ︷︷ ︸
⊃ U(1)Q

×U(1)B → SU(3)C+L+R︸ ︷︷ ︸
⊃ U(1)Q̃

Additional factors of Z3 not shown

I Breaks baryon number ⇒ superfluid ⇒ vortices

I Breaks chiral symmetry, but not by a 〈q̄q〉 condensate.

I Is there a phase transition between the low and high density
phases: (“quark-hadron continuity”) ?



Mysteries of superfluid vortices in CFL
CFL quark matter is a superfluid so angular momentum
is carried by vortices where the phase of the quark
condensate (all components) circulates around the core.

At large r,

〈qq〉 ∼ eiθ

Mystery 1:

These vortices are not stable !
A configuration of 3 well-separated
“semisuperfluid flux tubes” has
lower energy than a vortex.
Balachandran, Digal, Matsuura, hep-ph/0509276

?

Mystery 2:

Are the vortices:
Metastable: there is an energy barrier
Unstable: they spontaneously fall apart
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Effective theory of CFL condensate
Express the condensate as a scalar field Φ.

Φa
α = εαβγε

abc〈qβb q
γ
c 〉

Φ is a 3× 3 color-flavor matrix with baryon number 2
3
.

Φ couples to gluons. We neglect electromagnetism.

H = 1
4
FijF

ij +DiΦ
†DiΦ + U(Φ)

U(Φ) = m2Tr[Φ†Φ] + λ1(Tr[Φ†Φ])2 + λ2Tr[(Φ†Φ)2]

If m2 < 0, the ground state is

〈Φ〉 =
r

g

b

 1

u d s

1
1

 φ̄



The CFL superfluid vortex

The VEV of Φ breaks baryon number ⇒ superfluidity.
The superfluid vortex is

Ai = 0 , Φ(sf)a
α = φ̄ δaα × eiθβ(r)

(It depends only on m2 and λ ≡ 3λ1 + λ2.)

Φ(sf)a
α =

r

g

b

 eiθ
u d s

eiθ

eiθ

 φ̄ β(r)

This looks like a topologically stable configuration consisting of three
superimposed global vortices, but it is not stable !
(Balachandran, Digal, Matsuura, hep-ph/0509276; Eto, Nitta, arXiv:0907.1278)

Mystery 1 : How could there be a lower energy configuration?



U(1): Global vortex vs Local flux tube

Vortex (global) Flux tube (local)

e.g. vortex in a sf, like liq He e.g. flux tube in type-II supercond.
Energy ∼ log(Volume) Energy is finite

Strong long range repulsion Could attract or repel

Far from core, U(φ)→ 0

φ(r, θ) = φ̄ einθ φ(r, θ) = φ̄ einθ

Aθ = − n

gr
ε ∝ |~∇φ|2 = n2φ̄2/r2 ε ∝ | ~Dφ|2 = |~∇φ− ig ~Aφ|2 = 0

Evortex ∼ Ecore + n2φ̄2 ln
(Rbox

Rcore

)
Eflux tube ∼ Ecore

Two n = 1 vortices have Two n = 1 flux tubes could have
half the energy of more or less energy than
one n = 2 vortex one n = 2 flux tube
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Global vs local for SU(3)

CFL superfluid vortex is like three n=1 U(1) global vortices,
“red up”, “green down”, “blue strange”,

Φ(sf) ≈ φ̄

 eiθ

eiθ

eiθ

 A
(sf)
θ =

 0 0 0
0 0 0
0 0 0


Energy density ε ∼ 3× 12 × φ̄2/r2 = 3

φ̄2

r2

Gauge fields can cancel out the gradient energy from the winding of the
scalar field at large r.

Could we use color gauge fields to lower
the energy of the CFL superfluid vortex?

There is no U(1)B gauge field, so we can’t cancel all the gradient energy, but still. . .



The “semi-superfluid” flux tube

Φ(ssf) ≈ φ̄

 ei
θ
3

ei
θ
3

ei
θ
3

 ×
 e−i

θ
3

e−i
θ
3

ei
2θ
3

 =


1

1

eiθ



A
(ssf)
θ =

1

g r

1

3

 1 0 0
0 1 0
0 0 −2


︸ ︷︷ ︸

Global vortex, n = 1
3

︸ ︷︷ ︸
Local vortex

Far from core, ε ∼ 3× (1
3
)2 × φ̄2

r2
=

1

3

φ̄2

r2
vs 3

φ̄2

r2
for sf vortex



Using color flux to cancel U(1) winding

Superfluid vortex

effective
windingscalar field

+1

+1

+1

Total winding (ang mom): +3

Energy density:

|~∇Φ|2 ∼ 3× (+1)3 = 3

Semi-sf flux tube

scalar
+1/3

+1/3

+1/3

effective
winding

field
gauge
color

Total winding (ang mom): +1

Energy density

| ~DΦ|2 ∼ 3× (1/3)3 = 1/3



Mystery 1 solved

Mystery 1:

Why do three well-separated semi-superfluid flux tubes have lower
energy than a vortex?
Answer 1 :

The semi-superfluid flux tubes use color gauge fields to cancel the
gradient energy of part of the winding.

one sf vortex

ε ∼ 3φ̄2/r2

one semi-sf flux tube

ε ∼ 1
3
φ̄2/r2

We need 3 semi-sf flux tubes to
carry the same ang mom as one sf
vortex, but that still has lower
energy then the vortex



Long range repulsion

The semisuperfluid flux tubes have a strong long-range repulsion:

l

ϕ
2

2r
ε

ε ϕ3
2

2r

r . l low energy density

ε ∼ 3× 1
3
φ̄2/r2 = φ2/r2

r & l high energy density

ε ∼ 3 φ̄2/r2

So as l rises, more of space
contains low energy density.

V (l) ∼ φ̄2

∫ l

0

rdr
(1− 3)

r2

∼ const− φ̄2 ln(l)



Mystery 2: Unstable or Metastable?

l

V(l)

l

Metastable

Unstable

When slightly perturbed, does a sf vortex
fall apart immediately, or
remain intact?



Numerical analysis of stability: Method

I Discretize scalar and gauge fields on a 2D lattice

I Choose couplings in the effective theory

U(Φ) = m2Tr[Φ†Φ] + λ1(Tr[Φ†Φ])2 + λ2Tr[(Φ†Φ)2]

gauge coupling g
condensate self-couplings λ1, λ2 (λ ≡ 3λ1 + λ2)

I Initial config: superfluid vortex plus a small random perturbation

I Evolve forward in time and see what happens:
Unstable: an unstable mode grows exponentially until the vortex
falls apart
Metastable: the vortex experiences oscillations that do not grow in
amplitude.

I Vary the couplings, and map out metastability boundary in space
of couplings

file://sf_vortex_decay.gif


Numerical analysis of stability: example
Energy density plot, showing decay of a sf vortex
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Numerical analysis of stability: Results
Metastability region: λ1 = 1

3
(λ− λ2)

Vortices are metastable at low g and sufficiently negative λ1;
varying λ2 at fixed λ1 does not make much difference



Numerical analysis of stability: Results
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Superfluid vortices are metastable when λ1 . −0.16g ( λ1 = 1
3 (λ− λ2))

Increasing g or λ1 drives instability

Increasing λ2 at fixed g and λ1 doesn’t make much difference.

Can we understand the role of λ1?



What mode initiates vortex decay?
At g = 0 (no color gauge fields) we can guess the unstable mode
analytically.

superfluid
vortex:

Φ(sf)a
α =

r

g

b

 ϕ(~r )

u d s

ϕ(~r )
ϕ(~r )

 ϕ(~r ) ≡ φ̄ eiθ β(r)

Now, suppose we shift the different color/flavor components apart.
Shift red and green to the left by ε, and blue to the right by 2ε

Φ
(sf)
pert

a
α =

r

g

b

 ϕ(~r+εx̂ )

u d s

ϕ(~r+εx̂ )
ϕ(~r−2εx̂ )





The unstable mode of a vortex

So the perturbation is

δΦa
α = ε x̂ · ~∇ϕ(~r )T8

a
α T8 ≡

 1 0 0
0 1 0
0 0 −2


Calculating how this changes the energy, we find

δE = −ε2λ1
3πm4

(λ2 + 3λ1)2

∫ ∞

0

(dβ
dr

)2

β2rdr

If λ1 is positive, this lowers the energy: vortex is unstable.

In the numerical evolution, δΦ matches the mode that is observed to grow
exponentially fast in the Unstable region of parameter space.

We appear to have guessed the unstable mode at small g!



Summary

I The CFL phase of quark matter is a superfluid and so should carry
angular momentum in n = 1 vortices. However, the vortex has
higher energy than three well-separated n = 1

3
semi-sf flux tubes.

I Semi-sf flux tubes have lower energy because their color flux partly
cancels the gradient energy (E ∼ n2).

I Depending on the couplings in the effective theory, a vortex may be
metastable or unstable against decay.

I Weak coupling QCD calculations say that they are unstable.

I The mode that initiates decay does not involve the gauge fields!

I Semi-sf flux tubes are the only known example of long-range color
gauge potentials



Further questions

I Quark-hadron continuity (Schäfer & Wilzcek hep-ph/9811473)

hyperonic matter: superfluid with global vortices
CFL quark matter: superfluid with semi-superfluid flux tubes
Do the long-range color fields of a ssf flux tube provide a way to
distinguish CFL from hyperonic matter?
Alford, Baym, Fukushima, Hatsuda arXiv:1803.05115

Cherman,Sen,Yaffe, arXiv:1808.04827

I We assumed perfect flavor symmetry. Need to include strange
quark mass and electric neutrality constraint.

I Include entrainment (current-current) interactions?

I Stability of vortices in “color-spin-locked” phase of quark matter
(Schäfer, hep-ph/0006034)

I Observable consequences for stars with CFL cores?
• semi-sf flux tubes pin to LOFF crystal differently from sf vortices?
• zero modes of flux tubes play a role in transport?



Additional slides



Real world CFL matter
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The couplings in the effective theory are determined by microscopic physics.

Weak coupling calculation:

E.g.Tc = 15 MeV, µq = 400 MeV⇒ λ2 ≈ 0.6

λ1 = λ2 ≈ 420
(Tc
µq

)2

(Iida, Baym, hep-ph/0011229;
Giannakis, Ren, hep-ph/0108256)

This gives the dashed line in the figure

If this calculation can be extrapolated down to neutron star densities,
CFL vortices would always be unstable.


