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1 Introduction to Legendre transforms

If you know basic thermodynamics or classical mechanics, then you are already
familiar with the Legendre transformation, perhaps without realizing it. The
Legendre transformation connects two ways of specifying the same physics, via
functions of two related (“conjugate”) variables. Table 1 shows some examples of
Legendre transformations in basic mechanics and thermodynamics, expressed in
the standard way.

Context Relationship Conjugate variables

Classical particle H(p,z) = pt — L(&,x) p=0L/0x

mechanics L(%,z) = pi — H(p,x) & =0H/0p

Gibbs free G(T,..)=TS-U(S,...) T =0U/0S

energy Uus,..)=TS—-G(T,...) S =0G/oT

Enthalpy HP,..)=PV+UV,..., P=-0U/0V
UV,..)=—-PV+H(P,...) V=0H/OP

Grand Qp,...)=—-uN+U(n,...) p=0U/ON

potential Uln,...)=puN+Qu,...) N =-0Q/0pu

Table 1: Examples of the Legendre transform relationship in physics. In classical
mechanics, the Lagrangian L and Hamiltonian H are Legendre transforms of each
other, depending on conjugate variables & (velocity) and p (momentum) respectively.
In thermodynamics, the internal energy U can be Legendre transformed into various
thermodynamic potentials, with associated conjugate pairs of variables such as
temperature-entropy, pressure-volume, and “chemical potential”-density.

The standard way of talking about Legendre transforms can lead to
contradictorysounding statements. We can already see this in the simplest
example, the classical mechanics of a single particle, specified by the Legendre
transform pair L(z) and H(p) (we suppress the x dependence of each of them).
The standard account of their relationship can be summarized like this:



L(#) = p& — H(p) H(p) = pi — L(&)
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This derivation leads to the right equations of motion, but the logic sounds self-
contradictory:

e On the one hand, we are supposed to treat & and p as independent variables,
since when we take the derivative of the Lagrangian with respect to p we
keep & constant.

e On the other hand, we used the assumption that & and p are independent
variables to derive the equation of motion which says that velocity & and
momentum p are functions of each other.

What is going on? Are velocity and momentum independent variables or not?

2 Understanding the Legendre transform

To properly understand the Legendre transform we need to distinguish the
“ordinary” and “extended” versions of the functions we are dealing with. The
“extended” version is defined by taking the standard Legendre transform relations,
like those listed in Table 1, and allowing all the variables to vary independently
with no constraints from the physics.

For the simple example of a free classical particle in one dimension the extended
versions of the Hamiltonian and Lagrangian are

(2)

extended Hamiltonian H(p, i) = pi — L(&) ,
L(&,p) = pi— H(p) .

The essential distinction is that, while the ordinary Hamiltonian H(p) depends
only on the momentum, the extended Hamiltonian H(p, ) is a function of two

extended Lagrangian
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Figure 1: Left panel: 3D plot of the extended Hamiltonian H(p,#) = pi — L(&) for a
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the value of the extended Hamiltonian H (p, %) on the red line that runs along the “top
of the ridge”. For each momentum p it is the maximum value of H(p,4) when we vary
the velocity 4 (e.g., along one of the dashed black lines), as shown in the right panel

which is a slice through the 3D plot at a fixed momentum.

free nonrelativistic particle, L = 1md?2. The ordinary Hamiltonian H(p) (green curve) is

independent variables, the momentum and the velocity. This is illustrated in Fig. 1.
The extended Hamiltonian lives on a two-dimensional (&, p) space of states that
are mostly unphysical: the momentum and velocity are not related by the equation
of motion.

At each value of the momentum p we can vary the velocity and this traces
out the dashed black lines as shown in the left panel of Fig. 1. As we vary & at
fixed p, the extended Hamiltonian function rises to a maximum and then drops
again, as shown in the right panel of Fig. 1. The value of & at which H reaches its
maximum is the physically valid value of the velocity for the momentum at which
we are working. The value of the extended Hamiltonian at that maximum is the
value of the ordinary Hamiltonian at that momentum.

As we scan upwards in momentum, the maximum of H (p, &) with respect to &
shifts to larger values of z, and rises to higher values of the Hamiltonian function.
The ordinary Hamiltonian H(p) (the green curve in Fig. 1) is just the value of the
extended Hamiltonian along this rising ridge of maxima (marked by the red line
in Fig. 1), . 3

H(p) = max H(p, ) = H(p,#(p)) (3)

where @(p) (the blue curve in Fig. 1) tracks the position of the maximum with
respect to & of the extended Hamiltonian H(p, ). For a convex function L(&) the
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Figure 2: Left panel: the curve L(%) can be reconstructed just by knowing the y-
intercept of each tangent. Tangents are characterized by their slope p. Right panel: if
we take a tangent (solid straight line) and shift it (solid dashed line) to pass through the
origin, we can see that H(p;), defined as the maximum of pi — L(&), is also the negative
of the y-intercept of the tangent.

maximum is the unique stationary point, so &(p) is defined as the solution of

H
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Now we can understand (1) more clearly: The statement that “the Hamiltonian
only depends on momentum, not velocity” is a shorthand version of a more
complicated statement: the ordinary Hamiltonian at a given momentum is the
value of the extended Hamiltonian for that momentum, with the velocity set to
the unique value where the extended Hamiltonian doesn’t depend (to first order)
on velocity.

If we think of nature as “looking for the minimum of the Lagrangian” then we
can think of the momentum as the coefficient of a bias field that we subtract from
the Lagrangian in order to move that minimum to higher velocities. The result
of doing this is the extended Hamiltonian H, which depends on momentum and
velocity. At a given momentum, nature favors the state with the maximum value
of H, so the velocity adjusts itself to that value. The equation of motion just tells
us which velocity will be favored for each value of the momentum.

3 Legendre transform and convex functions

The Legendre transform exploits a special feature of a convex (or concave) function
f(z): its slope f'(x) is monotonic and hence is a single-valued and invertible
function of x. This means that the function can be specified in the conventional



way, by giving the value of f(x) for each z, or it can be specified indirectly by
giving the y-intercept of each tangent line to the function.

This is illustrated in the left panel of Fig. 2. If we know the vertical positioning
(i.e. the y-intercept) of each tangent line to L(&), then we can draw them all in the
correct places, and L(#) can be reconstructed as the envelope of all the tangents. In
the right panel of Fig. 2 we show how this relates to the standard definition of the
Legendre transform. If we draw the line of slope p, i.e. L = pz (dashed straight line)
then (see (3)) the Legendre transform H(p;) is the maximum difference between
this line and the curve L(z),

H(py) = max(pyi — L(#)) (5)

By shifting the line so that it is tangent to L(Z), we see that the y-intercept is
—H (p1). So specifying H(p) is equivalent to specifying the y-intercepts of all the
tangents to L(), which is just an alternative way of specifying L(z).

4 Multiple Legendre transforms

We can simultaneously Legendre transform with respect to many variables. For a
multiparticle classical system, the Lagrangian and Hamiltonian are related by

H(pi,xi) = sz% — L(2, ;) . (6)

We can naturally generalize this construction to a classical field theory where the
discrete index ¢ becomes a continuous index & labelling a different degree of freedom
at each point in space, and the Lagrangian and Hamiltonian become functionals:

mmﬂzfnwamm—u@@. (7)

Finally, in quantum field theory, we find a Legendre transform relationship between
W1J], the generator of connected Greens functions, and I'[¢], the generator of one-
particle-irreducible Greens functions:

rmz—/ﬂ@wmw+wm. (®)

Note that the signs here are opposite to the conventional Legendre transform, as
in the case of enthalpy and internal energy (Table 1). This just means that we will
get some minus signs in the resultant relationships between conjugate variables.
Another way to say it is that we should have defined I' differently, as the negative
of how it is conventionally defined.



